Google Scholar API uses /api/v1/search?engine=google_scholar API endpoint to scrape real-time results.

Google Scholar API lets users search for academic content like articles, theses, and books from various sources. It ranks these items based on their text, author, where they're published, and how often they're cited. This helps users find relevant research quickly.

API Parameters

Search Query

  • Name
    q
    Required
    Required
    Description

    Parameter defines the query you want to search. You can use anything that you would use in a regular Google Scholar search. e.g. source:, author:. Parameter is not required if cites or cluster parameter is present.

  • Name
    cites
    Required
    Optional
    Description

    The cites parameter is used to specify a unique ID for an article. Utilizing this parameter will generate a list of documents in Google Scholar that cite the specified article. For instance, cites=13392090434137936466 could be used to find all documents that cite the article with this unique ID. Additionally, using both the cites and q parameters together will result in a search within the citing articles themselves.

  • Name
    cluster
    Required
    Optional
    Description

    The cluster parameter is used to specify a unique ID for an article. Utilizing this parameter will generate a list of document versions in Google Scholar that are related to the specified article.
    Note: When the q and cluster parameters are used together, they are not compatible. In such cases, priority is given to the q parameter.

Localization

  • Name
    hl
    Required
    Optional
    Description

    The default parameter en defines the interface language of the search. Check the full list of supported Google hl languages.

  • Name
    lr
    Required
    Optional
    Description

    The lr parameter restricts search results to documents written in a particular language or a set of languages. The accepted format for this parameter is lang_{2-letter country code}. For instance, to filter documents written in Japanese, the value should be set to lang_jp. To incorporate multiple languages, a value like lang_it|lang_de restricts the search to documents written in either Italian or German. Google identifies the document language based on the top-level domain (TLD) of the document's URL, any language meta tags present, or the language utilized within the document's body text. Check the full list of supported Google lr languages.

Filters

  • Name
    scisbd
    Required
    Optional
    Description

    Default value 0 returns all results sorted by relevance. There are two other options:

    • 1 - includes only abstracts, filters articles added in the last year, and sorts by date.
    • 2 - filters articles added in the last year and sorts by date.
    Note: scisbd=1 and scisbd=2 values are not compatible with as_ylo or as_yhi parameters.

  • Name
    as_ylo
    Required
    Optional
    Description

    Parameter sets the start year to filter results. Pair with as_yhi for a specific end year. Input format: YYYY. E.g., as_ylo=2022 fetches results from 2022 onwards.

  • Name
    as_yhi
    Required
    Optional
    Description

    Parameter sets the start year to filter results. Pair with as_yhi for a specific end year. Input format: YYYY. E.g., as_yhi=2022 fetches results till 2022 backwards.

  • Name
    as_rr
    Required
    Optional
    Description

    Default value 0 returns all results. Use 1 to return results only with review articles.

  • Name
    as_vis
    Required
    Optional
    Description

    Default value 0 returns results with citations. Use 1 to return results without citations.

  • Name
    as_sdt
    Required
    Optional
    Description

    This parameter works as a filter for patents or as filter for US court law. By default, 0 returns results without patents.
    Patent Filter Values:

    • 0 - Excludes patents (default).
    • 7 - Includes patents.
    US Courts Law Search Types:
    • 4 - All US courts. For specific courts, append values after 4 separated by commas (e.g., 4,1 for Alabama courts or 4,192 for tax federal court).
    • ffffffffffffe04 - All US state courts.
    • 3 - All US federal courts.
    See a complete list of Google Scholar supported courts.

  • Name
    filter
    Required
    Optional
    Description

    This parameter controls whether the "Duplicate Content" and "Host Crowding" filters are enabled. Set the value to 1 to enable these filters, which is the default setting. To disable these filters, set the value to 0.

  • Name
    safe
    Required
    Optional
    Description

    This parameter toggles the SafeSearch feature for the results. SafeSearch operates by filtering out adult content from your search results. Google's filters use proprietary technology to check keywords, phrases and URLs. While no filters are 100 percent accurate, SafeSearch will remove the overwhelming majority of adult content from your search results. Set the value to active to enable SafeSearch. To disable it, set the value to off. By default, SafeSearch is disabled.

  • Name
    source
    Required
    Optional
    Description

    This parameter allows filtering of organic results based on a specific source. It is added to the q parameter and is not compatible with cites or cluster parameters.

Pagination

  • Name
    num
    Required
    Optional
    Description

    This parameter specifies the number of results to display per page. By default, it is set to 10, maximum number - 20. Use in combination with the page parameter to implement pagination functionality.

  • Name
    page
    Required
    Optional
    Description

    This parameter indicates which page of results to return. By default, it is set to 1. Use in combination with the num parameter to implement pagination.

Engine

  • Name
    engine
    Required
    Required
    Description

    Parameter defines an engine that will be used to retrieve real-time data. It must be set to google_scholar.

API key

  • Name
    api_key
    Required
    Required
    Description

    The api_key authenticates your requests. Use it as a query parameter (https://www.searchapi.io/api/v1/search?api_key=YOUR_API_KEY) or in the Authorization header (Bearer YOUR_API_KEY).

API Examples

Full Response

Full Response
GET
https://www.searchapi.io/api/v1/search?engine=google_scholar&q=Langchain
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar",
  "q": "Langchain"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  "search_metadata": {
    "id": "search_AxENYzjKgR4PcjaK3D0M4GJb",
    "status": "Success",
    "created_at": "2023-08-14T14:21:25Z",
    "request_time_taken": 1.27,
    "parsing_time_taken": 0.03,
    "total_time_taken": 1.3,
    "request_url": "https://scholar.google.com/scholar?q=Langchain&hl=en",
    "html_url": "https://www.searchapi.io/api/v1/searches/search_AxENYzjKgR4PcjaK3D0M4GJb.html",
    "json_url": "https://www.searchapi.io/api/v1/searches/search_AxENYzjKgR4PcjaK3D0M4GJb"
  },
  "search_parameters": {
    "engine": "google_scholar",
    "q": "Langchain",
    "google_domain": "google.com",
    "hl": "en"
  },
  "search_information": {
    "query_displayed": "Langchain",
    "total_results": 411,
    "page": 1,
    "time_taken_displayed": 0.07
  },
  "organic_results": [
    {
      "position": 1,
      "title": "Creating Large Language Model Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast",
      "data_cid": "QXV-Nxym8hQJ",
      "link": "https://as-proceeding.com/index.php/icaens/article/view/1127",
      "publication": "O Topsakal, TC Akinci - International Conference on Applied …, 2023 - as-proceeding.com",
      "snippet": "… LangChain has been widely recognized in the AI community for its ability … LangChain and provide a primer on developing large language model applications rapidly utilizing LangChain…",
      "inline_links": {
        "cached_page_link": "https://scholar.googleusercontent.com/scholar?q=cache:QXV-Nxym8hQJ:scholar.google.com/+Langchain&hl=en&as_sdt=0,5"
      },
      "resource": {
        "name": "as-proceeding.com",
        "format": "PDF",
        "link": "https://as-proceeding.com/index.php/icaens/article/download/1127/1062"
      },
      "authors": [
        {
          "name": "O Topsakal",
          "id": "ukpd7PsAAAAJ",
          "link": "https://scholar.google.com/citations?user=ukpd7PsAAAAJ&hl=en&oi=sra"
        },
        ...
      ]
    },
    ...
  ],
  "pagination": {
    "current": 1,
    "next": "https://scholar.google.com/scholar?start=10&q=Langchain&hl=en&as_sdt=0,5",
    "other_pages": {
      "2": "https://scholar.google.com/scholar?start=10&q=Langchain&hl=en&as_sdt=0,5",
      ...
    }
  }
}
Cluster Search
GET
https://www.searchapi.io/api/v1/search?cluster=10342765531442280392&engine=google_scholar
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar",
  "cluster": "10342765531442280392"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  "search_metadata": {
    "id": "search_RqXLK4ZloPW8i54BgxM8z2jE",
    "status": "Success",
    "created_at": "2023-08-09T14:17:59Z",
    "request_time_taken": 1.3,
    "parsing_time_taken": 0.02,
    "total_time_taken": 1.31,
    "request_url": "https://scholar.google.com/scholar?hl=en&cluster=10342765531442280392",
    "html_url": "https://www.searchapi.io/api/v1/searches/search_RqXLK4ZloPW8i54BgxM8z2jE.html",
    "json_url": "https://www.searchapi.io/api/v1/searches/search_RqXLK4ZloPW8i54BgxM8z2jE"
  },
  "search_parameters": {
    "engine": "google_scholar",
    "google_domain": "google.com",
    "hl": "en",
    "cluster": "10342765531442280392"
  },
  "search_information": {
    "total_results": 5,
    "time_taken_displayed": 0.02
  },
  "organic_results": [
    {
      "position": 1,
      "title": "OpenAI ChatGPT generated literature review: Digital twin in healthcare",
      "data_cid": "yHfF2HPiiI8J",
      "link": "https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4308687",
      "publication": "Ö Aydın, E Karaarslan - Available at SSRN 4308687, 2022 - papers.ssrn.com",
      "snippet": "Literature review articles are essential to summarise the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions …",
      "inline_links": {
        "cited_by": {
          "cites_id": "10342765531442280392",
          "total": 135,
          "link": "https://scholar.google.com/scholar?cites=10342765531442280392&as_sdt=5,47&sciodt=0,47&hl=en"
        },
        "related_articles_link": "https://scholar.google.com/scholar?q=related:yHfF2HPiiI8J:scholar.google.com/&scioq=&hl=en&as_sdt=0,47"
      },
      "authors": [
        {
          "name": "Ö Aydın",
          "id": "cX5ncpcAAAAJ",
          "link": "https://scholar.google.com/citations?user=cX5ncpcAAAAJ&hl=en&oi=sra"
        },
        ...
      ]
    },
    ...
  ]
}
Cites Search
GET
https://www.searchapi.io/api/v1/search?cites=10342765531442280392&engine=google_scholar
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar",
  "cites": "10342765531442280392"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  "search_metadata": {
    "id": "search_AEM9arelpd2kFE2QoW0Nw8nB",
    "status": "Success",
    "created_at": "2023-08-09T14:19:11Z",
    "request_time_taken": 1.44,
    "parsing_time_taken": 0.03,
    "total_time_taken": 1.47,
    "request_url": "https://scholar.google.com/scholar?hl=en&cites=10342765531442280392",
    "html_url": "https://www.searchapi.io/api/v1/searches/search_AEM9arelpd2kFE2QoW0Nw8nB.html",
    "json_url": "https://www.searchapi.io/api/v1/searches/search_AEM9arelpd2kFE2QoW0Nw8nB"
  },
  "search_parameters": {
    "engine": "google_scholar",
    "google_domain": "google.com",
    "hl": "en",
    "cites": "10342765531442280392"
  },
  "search_information": {
    "total_results": 135,
    "page": 1,
    "time_taken_displayed": 0.03
  },
  "organic_results": [
    {
      "position": 1,
      "title": "“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research …",
      "data_cid": "gt4k4ov5NCUJ",
      "link": "https://www.sciencedirect.com/science/article/pii/S0268401223000233",
      "publication": "YK Dwivedi, N Kshetri, L Hughes, EL Slade… - International Journal of …, 2023 - Elsevier",
      "snippet": "Transformative artificially intelligent tools, such as ChatGPT, designed to generate sophisticated text indistinguishable from that produced by a human, are applicable across a …",
      "inline_links": {
        "cited_by": {
          "cites_id": "2681042057382125186",
          "total": 250,
          "link": "https://scholar.google.com/scholar?cites=2681042057382125186&as_sdt=2005&sciodt=0,5&hl=en"
        },
        "versions": {
          "cluster_id": "2681042057382125186",
          "total": 30,
          "link": "https://scholar.google.com/scholar?cluster=2681042057382125186&hl=en&as_sdt=2005&sciodt=0,5"
        },
        "related_articles_link": "https://scholar.google.com/scholar?q=related:gt4k4ov5NCUJ:scholar.google.com/&scioq=&hl=en&as_sdt=2005&sciodt=0,5"
      },
      "resource": {
        "name": "sciencedirect.com",
        "format": "HTML",
        "link": "https://www.sciencedirect.com/science/article/pii/S0268401223000233"
      },
      "authors": [
        {
          "name": "YK Dwivedi",
          "id": "SQ_uDYIAAAAJ",
          "link": "https://scholar.google.com/citations?user=SQ_uDYIAAAAJ&hl=en&oi=sra"
        },
        ...
      ]
    },
    ...
  ],
  "pagination": {
    "current": 1,
    "next": "https://scholar.google.com/scholar?start=10&hl=en&as_sdt=2005&sciodt=0,5&cites=10342765531442280392&scipsc=",
    "other_pages": [
      "https://scholar.google.com/scholar?start=10&hl=en&as_sdt=2005&sciodt=0,5&cites=10342765531442280392&scipsc=",
      ...
    ]
  }
}

Profiles

Profiles
GET
https://www.searchapi.io/api/v1/search?engine=google_scholar&q=author%3AIlya+Sutskever
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar",
  "q": "author:Ilya Sutskever"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  ...
  "profiles": [
    {
      "author_id": "x04W_mMAAAAJ",
      "name": "Ilya Sutskever",
      "link": "https://scholar.google.com/citations?user=x04W_mMAAAAJ&hl=en&oi=ao",
      "affiliations": "Co-Founder and Chief Scientist of OpenAI",
      "email": "Verified email at openai.com",
      "cited_by": {
        "total": 422635
      }
    }
  ]
  ...
}
Related Searches
GET
https://www.searchapi.io/api/v1/search?engine=google_scholar&q=AI
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar",
  "q": "AI"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  ...
  "related_searches": [
    {
      "query": "mario ai championship",
      "highlighted": [
        "mario",
        "championship"
      ],
      "link": "https://scholar.google.com/scholar?hl=en&as_sdt=0,33&qsp=1&q=mario+ai+championship&qst=ir"
    },
    ...
  ],
  ...
}