Google Scholar Cite API

Google Scholar Cite API uses /api/v1/search?engine=google_scholar_cite API endpoint to scrape real-time results.

A citation is like giving a shout-out to someone's work you've utilized in your research. It helps guard against content theft and directs readers to the original source. Key components of a citation often encompass the author's name, publication date, and source details. A citation style sets the standard for these acknowledgments, specifying the details to highlight and their presentation format. The predominant styles include:

  • APA (American Psychological Association) Style - common in Education, Psychology, and Sciences.
  • MLA (Modern Language Association) Style - favored by the Humanities.
  • Chicago Style - preferred in Business, History, and the Fine Arts.
  • Vancouver Style - adopted by Health Science disciplines.

API Parameters

Search Query

  • Name
    data_cid
    Required
    Required
    Description

    Parameter defines the cite id of the selected article. This id can be found in Google Scholar search results under the data_cid key value.

Localization

  • Name
    hl
    Required
    Optional
    Description

    The default parameter en defines the interface language of the search. Check the full list of supported Google hl languages.

Engine

  • Name
    engine
    Required
    Required
    Description

    Parameter defines an engine that will be used to retrieve real-time data. It must be set to google_scholar_cite.

API key

  • Name
    api_key
    Required
    Required
    Description

    The api_key authenticates your requests. Use it as a query parameter (https://www.searchapi.io/api/v1/search?api_key=YOUR_API_KEY) or in the Authorization header (Bearer YOUR_API_KEY).

API Examples

Full Response

Full Response
GET
https://www.searchapi.io/api/v1/search?data_cid=QXV-Nxym8hQJ&engine=google_scholar_cite
Request
import requests

url = "https://www.searchapi.io/api/v1/search"
params = {
  "engine": "google_scholar_cite",
  "data_cid": "QXV-Nxym8hQJ"
}

response = requests.get(url, params=params)
print(response.text)
Response
{
  "search_metadata": {
    "id": "search_OxE2l6wMgOJVS98Wp9PbYq4K",
    "status": "Success",
    "created_at": "2023-08-21T15:19:54Z",
    "request_time_taken": 1.45,
    "parsing_time_taken": 0,
    "total_time_taken": 1.46,
    "request_url": "https://scholar.google.com/scholar?q=info:QXV-Nxym8hQJ:scholar.google.com&hl=en&output=cite",
    "html_url": "https://www.searchapi.io/api/v1/searches/search_OxE2l6wMgOJVS98Wp9PbYq4K.html",
    "json_url": "https://www.searchapi.io/api/v1/searches/search_OxE2l6wMgOJVS98Wp9PbYq4K"
  },
  "search_parameters": {
    "engine": "google_scholar_cite",
    "data_cid": "QXV-Nxym8hQJ",
    "hl": "en"
  },
  "citations": [
    {
      "title": "MLA",
      "snippet": "Topsakal, Oguzhan, and Tahir Cetin Akinci. \"Creating Large Language Model Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast.\" International Conference on Applied Engineering and Natural Sciences. Vol. 1. No. 1. 2023."
    },
    ...
  ],
  "links": [
    {
      "title": "BibTeX",
      "link": "https://scholar.googleusercontent.com/scholar.bib?q=info:QXV-Nxym8hQJ:scholar.google.com/&output=citation&scisdr=ClFgCtb1GAA:AFWwaeYAAAAAZOOC9X2MMMWTKv9bfkvSXnQateA&scisig=AFWwaeYAAAAAZOOC9V_dD482ayHgGCf_ul8641c&scisf=4&ct=citation&cd=-1&hl=en"
    },
    ...
  ]
}